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Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) tra�c 
ow.
Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic
fundamental diagrams. One can use these models to investigate tra�c phenomena near maximum 
ow. A
so-called phase transition at average maximum 
ow is visible in the life-times of jams. The resulting dynamic
picture is consistent with recent 
uid-dynamical results by K�uhne/Kerner/Konh�auser, and with Treiterer's
hysteresis description. This places CA models between car-following models and 
uid-dynamical models for
tra�c 
ow. | CA models are tested in projects in Los Alamos (USA) and in NRW (Germany) for large scale
microsimulations of network tra�c.

1 Introduction

Simulation obeys a basic trade-o� between resolution, �delity, and scale. Many questions
in transportation simulation currently can only be treated using high-resolution models (i.e.
resolving each individual traveller) and looking at large spatial and temporal scales (e.g. for land
use forcasts). In that situation, it is straightforward to think about reducing �delity as much as
possible. With respect to vehicular tra�c 
ow, this means to �nd a minimal model of driving
behavior without loosing features which are believed to be essential for large scale questions.
One solution to this challenge are cellular automata [25, 27] models of tra�c [5, 4, 23].

These models serve a multitude of purposes: They run fast on computers, which allows both
quick testing of di�erent approaches as well as extensive statistical analysis, and they are
simple enough for analytical treatment. All this helps answering the question of a minimal
�delity (minimal complexity [3]) model of driving behavior. In addition, the high computing
speed also o�ers a potential for real time applications.

Schreckenberg and Nagel [22] give a more physics based view on why such models are useful.

2 The Stochastic Tra�c Cellular Automaton (STCA)

The basic computational model is de�ned on a one-dimensional array of L sites with open or
periodic boundary conditions. This could, for example, be a link in a road network. Each site
is either occupied by one vehicle, or empty. Each vehicle has an integer velocity with values
between zero and vmax, where we often use vmax = 5 for reasons stated below. The number of
empty sites in front of a vehicle is denoted by gap. For an arbitrary con�guration, one update of
the system consists of the following four consecutive steps, which are performed simultaneously
for all vehicles:1

1.) Acceleration: If the velocity v of a vehicle is lower than vmax and if there is enough space
ahead, then the speed is increased by one: If (v < vmax & v < gap) THEN v := v + 1.

1Note that either rule 1 or rule 2 applies, but never both.
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Figure 1: Simulated tra�c at a density of 0.09 cars per site. Each new line shows the tra�c lane after one
further complete velocity-update and just before the car motion. Empty sites are represented by a dot, sites
which are occupied by a car are represented by the integer number of its velocity. Cars are moving from left to
right. | One clearly sees the jam wave moving opposite to the tra�c direction.

2.) Slowing down (due to other cars): Else if the next vehicle ahead is too close, speed
is reduced to gap: : : : ELSE IF (v > gap) THEN v := gap.

3.) Randomization (which is applied after rules 1 & 2): With probability p, the velocity of
each vehicle (if greater than zero) is decreased by one.

4.) Car motion: Each vehicle is advanced v sites.

Note that, because of integer arithmetic, expressions like for example v < gap and v � gap� 1
are equivalent.

Since this model involves discrete space, discrete time, a small number of discrete states per
cell, and a local and completely synchroneous update, this model is formally a (stochastic)
cellular automaton.

Already this simple model shows nontrivial and realistic behavior, for example start-stop-waves
which are visible in space-time-plots (Fig. 1), or qualitatively realistic fundamental diagrams
(Fig. 2). That reinforces our claim that already fairly simple models of driving dynamics can
be rather realistic on more macroscopic scales.

Step 3 is essential in simulating realistic tra�c 
ow since otherwise the dynamics is completely
deterministic. When following through the rules for special cases like a single car on an empty
road or a car approaching a thick tra�c jam, one �nds that it condenses three di�erent behav-
ioral patterns into one computational rule: (i) 
uctuations at maximum speed; (ii) retarded
acceleration; (iii) over-reactions at braking. Without this randomness, every initial con�gura-
tion of vehicles and corresponding velocities reaches very quickly a stationary pattern which is
shifted backwards, i.e. opposite to the vehicle motion, one site per time step [11, 12, 15].

The model can also be seen as a discrete particle hopping model [9]. Simpler versions of the CA
model can be related to the Lighthill-Whitham theory of tra�c 
ow. See [22] for more details.

3 Tra�c jam dynamics

The statistics of the tra�c jams in the STCA can be analyzed in a systematic way. Roughly
speaking, a so-called phase transition takes place at the density �c corresponding to maximum
average 
ow; at higher densities than that tra�c jams can survive for in�nitely long times.
This phase transition can be described using concepts from the physics of critical phenonema.

More precisely, assume a situation with laminar tra�c 
ow at a given homogeneous density
�o and with a homogeneous 
ow qo = vmax � �o (cf. Fig. 3). Now assume a small disturbance
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Figure 2: Fundamental diagram of the model (throughput versus density). Points: Averages over short times
(100 iterations) in a su�ciently large system (L = 10; 000). Broken line: Long time averages (106 iterations) in
a large system (L = 10; 000). Dotted line: Long time averages in a small system (L = 100).
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Figure 3: Space-time plot of tra�c at density � = 0:85 in the so-called cruise control limit, i.e. 
uctuations at
maximum speed are arti�cially set to zero. At t = 5, we emulate a disturbance by setting the velocity of a
randomly selected vehicle to zero. One clearly sees the growing disturbance.

of this laminar 
ow, for example by setting the velocity of one randomly selected car to zero.
Many di�erent choices for the local perturbation give rise to the same large scale behavior.
The perturbed car eventually re-accelerates to maximum velocity. In the meantime, though, a
following car may have come too close to the disturbed car and has to slow down. This initiates
a chain reaction { an emergent tra�c jam.



Now, in the average, one �nds three di�erent behaviors, depending on �o:

� For relatively low densities, the emergent tra�c jam quickly dissolves.

� For relatively high densities, the emergent tra�c jam grows forever, that is the in
ow
into the jam qin = qo is higher than the out
ow qout, and the average number of cars in a
jam, hn(t)iall, behaves as

hn(t; �o)iall � t � (qin(�o)� qout) ;

where � means \proportional to for t ! 1" and h: : :iall means the ensemble average
over all initiated jams, i.e. the average over many simulations using �o but di�erent
Monte Carlo seeds.

� Somewhere in between, that is when �o is such that qin = qout, the emergent jam in the
average neither grows or shrinks. This density is called the critical density �c = qout=vmax.
Note that the critical point is given by the out
ow behavior, which is in turn given by
the acceleration behavior of drivers.

See [16] for more details.

It has to be stressed again that this description is only true in the ensemble average, i.e. for
each given �o we averaged over many di�erent Monte Carlo realizations. For an individual jam,
it happens rather often that even above �c the jam eventually dies out; others however keep on
growing forever and therefore compensate in the average.

This average picture is phenomenologically consistent with the 
uid-dynamical model of K�uh-
ne/Kerner/Konh�auser [8, 7, 20, 24] (KKK model), except that one has to replace hn(t)iall by
the amplitude A(t): In the 
uid-dynamical model, below a certain density �c, A(t) decreases
exponentially; above �c, one �nds, at least initially, exponential growth, and exactly at �c, the
amplitude neither grows nor shrinks. See [18].

The CA picture is also consistent with some newer mathematical car following models [2], and
also with Treiterer's observation of a hysteresis e�ect: Laminar 
ow above the critical density
�c is possible for some time, but eventually tra�c breaks down and separates into (i) jams, and
(ii) laminar 
ow at �c in between jams [18].

However, the STCA goes beyond the 
uid-dynamical and (mathematical) car following models
mentioned above as it allows for a stochastic evolution of the tra�c jam. This is expected to
be extremely important in tra�c networks near capacity, where spill-back from disturbances
may grow back into upstream intersections, which may cause a complete network break-down.
Here, a deterministic model either always predicts network breakdown or always not, whereas
a stochastic model allows to predict the probability of such a break-down event.

It is interesting to note that a theoretic argument for the jam dynamics suggests that tra�c
jam dynamics is \universal", which is a well de�ned concept in the theory of critical phenomena
and means that probably many and maybe all one-dimensional tra�c models with \reasonable"
rules display, again in the thermodynamic limit and in a certain coarse-grained description, the
same tra�c jam dynamics. Depending on the needs for the tra�c question under consideration,
the simplest version of this jam dynamics may well be good enough and more complicated
models then only cost resources.

4 Computational speeds

We have performed extensive tests of computational speeds of di�erent implementations of the
CA on di�erent computer architectures [14, 19, 21, 15]. Especially for parallel machines, system
size becomes a crucial quantity since, for example, a certain system size may run e�ciently on a



small number of processors but ine�ciently on a large number of processors. For simpli�cation,
the following numbers therefore are extrapolations from a simulated system of size 10 000 km
(single lane), with a CA density of � = 0:1, i.e. 133 333 vehicles; for more details see the above
references. Some conclusions from the tests can be summarized as follows:

� CA models are in principle amenable to single bit coding, thereby stu�ng all 32 (or
64) bits of a computer word with information and processing this information simul-
taneously using word-wise logical operations. These approaches run extremely fast on
traditional vector-computers like the Crays. We reached real time limits of 4 � 106 km or
53 � 106 veh sec/sec (vehicle seconds per second) on a NEC SX-3.

� On non-vectorizing parallel machines though, single bit coding is not much faster, and it
is also much less 
exible for more ambitious uses where one would, say, want to keep track
of travelers' plans. We still reached, for example, a real time limit of 260 000 km or 3:5 �
106 veh sec/sec on an 32-node Intel iPSC hypercube, or 220 000 km (2:9 �106 veh sec/sec)
on a 32-node CM-5 (not using the vector units).

� An implementation of the freeway network of NRW (including freeway intersections and
lane changing) slowed the simulation speed down by less than a factor of 2. We reached
290 000 km or 3:8 � 106 veh sec/sec on a 64-node Intel Paragon.

� Extrapolations for a large but existing machine, the 1024-node CM-5, let us expect 1:7 �
106 km or 22 � 106 veh sec/sec, i.e. enough simulation speed for the whole Los Angeles
area in real time.

5 Simulations of the freeway network of NRW

The model has been used to makemicroscopic simulations of the freeway network of the German
land NRW [19, 15]. Here we will describe some simulations which have been undertaken to
test the usefulness of a CA approach for simulating route choice behavior in realistic network
con�gurations.

In the simulations, there are many travelers with di�erent origin-destination pairs. Travelers
have route plans (paths) so that they know on which intersections they have to make turns
in order to reach their destinations. Each traveler has a choice between 10 di�erent paths.
Each traveler chooses a path, the microsimulation is executed according to the plans of each
traveler (no re-planning during the trip), and each traveler remembers the performance of
his/her option.

Each traveler tries each option once. Afterwards, she usually chooses the option which per-
formed best in the past, except that, with a small probability pother, another option is chosen
randomly, in order to update the information about other options.

This approach { giving each agent a set of options and let each agent act on the basis of the
performances of these options { is a simpli�ed version of Holland's classi�er systems [6, 1].

The simulations were based on a digital version of the freeway network of NRW (see [19, 15]
for details). The code is written for parallel computers using message passing, in principle for
an arbitrary numbers of computational nodes (CPNs). In practice, two Sparc10 workstations,
coupled via optical link and using PVM 3.2, were used. That gives the idea that experiments
such as the following are already possible with a still modest amount of hardware, and that the
consistent use of parallel supercomputers will allow systematic analysis of much larger systems.

Apart from the network and the individual trip plans, the simulation is kept as simple and
straightforward as possible. This includes single directional lanes (i.e. only one lane in each
direction) and over-simpli�ed ramps [13, 15].



The speci�c simulation set-up is described in the following. The simulation is an approximation
of long distance tra�c through NRW. Let us denote by boundary points the points where the
freeways cross the borders of NRW. In the way the network was prepared [19, 15], these are the
only open ends of the network. At each of these endpoints, 2000 vehicles were assumed to be in
an ordered queue with the desire to enter as early as possible. Each vehicle had a destination,
which was one of the other boundary points of the networks, and which remained the same
through all repetitions of the simulation. The destinations were chosen randomly, with a higher
probability of choosing destinations which were far away; using di�erent distributions gave only
small di�erences on the level of detail which is discussed here [15].

Then, each vehicle gets a list of 10 di�erent paths to reach its destination. These lists have
been pre-calculated for all allowed O-D-pairs, and contain the 10 geometrically shortest paths
which do not use the same node twice ([10], see [15]). Each vehicle individually now decides
which path to use. In the �rst day (= period), each vehicle uses the shortest path; during the
subsequent 9 days, each vehicle randomly selects one of the not yet tested options. Afterwards,
it selects, as mentioned above, the option with the best performance, apart from the probability
pother = 5% to re-test one of the other options, which is then chosen randomly.

After these preparations, the microsimulation starts. Vehicles are updated according to the
standard dynamical rules, and they change segments when they are at an intersection. Each
vehicle then follows its plan until it reaches its destination, where it notes the arrival time tarriv,
i.e. the current iteration step of the simulation, which is used as performance criterion for this
speci�c path. When this is the �rst time this speci�c path has been used, this is used as the
�rst guess; for repeated trials of the same route, both a myopic and an averaging scheme were
tested without visible di�erences.

After all vehicles have reached their destinations and recorded the above information, the
simulation is restarted, where all vehicles have the same initial position and the same destination
as before, but may choose a di�erent path according to the rules described above.

Figs. 4 demonstrates the result of the learning algorithm. Both the top and the bottom �gure
uses exactly the same initial con�guration of cars with their individual destination. Both �gures
are snapshots of the situation after 6000 iterations (100 minutes). The top �gure shows the
situation when every driver follows the geometrically shortest path. Meanwhile, in the bottom
�gure, drivers act according to their previous experiences, i.e. they usually use the path where
they were fastest in the past. Note that, generally speaking, people \learn" according to the
programmed rules to equilibrate the jams between di�erent paths, so that all options are equally
slow.

Further experimentation reveals that the day-to-day pattern of these simulations after the
learning phase is fairly stable. Together with the result that also neither the learning algorithm
(myopic vs. averaging) nor the speci�c distance distribution do not matter very much, one can
conclude quite in general that many of the results are robust, in spite of the stochasticity of
the model.

Both the TRANSIMS project in Los Alamos [26] and the \Verkehrsverbund NRW" in Germany
plan to use CA approaches as a microsimulation option.

6 Summary

Already a simple, grid-based particle hopping model yields realistic tra�c jam behavior and
realistic fundamental diagrams. The model was used to investigate the regime of maximum

ow. It was found that there is a phase transition at a critical density �c; above �c tra�c jams
in the average never dissolve, therefore de�ning average maximum 
ow after the break-down of
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Figure 4: Top: Situation at the \�rst day" after 6000 iterations (100 minutes), when trips through the network
are chosen with a fourth order preference for long trips, and when all drivers follow the geometrically shortest
path. | Bottom: Situation at \day 15" after 6000 iterations (100 minutes), for the same initial conditions as
for the top �gure, but where drivers have \learned".

laminar 
ow. This behavior is similar to recent 
uid-dynamical and continuous car-following
theories of tra�c 
ow, as well as with Treiterer's hysteresis description. Implementations on
di�erent supercomputers con�rm that the computational speed is su�cient to perform regional
tra�c simulations in faster than real time. Results from simulations of the freeway network of



the German land North-Rhine-Westfalia show in a more practical case, that this model makes
simulations based on individual behavior possible with only a modest amount of hardware.
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